$\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$, a New Compound Containing Isolated Clusters $\mathbf{O s}_{\mathbf{2}} \mathrm{O}_{10}$ with Metal-Metal Bonds

FRANCIS ABRAHAM, JACQUES TREHOUX, AND DANIEL THOMAS*
Laboratoire de Cristallochimie, Université des Sciences et Techniques de Lille, B. P. 36, 59650 Villeneuve d'Ascq, France

Received May 30, 1978; in final form September 11, 1978

Abstract

The formula of a new compound isolated in the $\mathrm{La}-\mathrm{Os}-\mathrm{O}$ system has been established by means of crystal structure determination. There are two $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$ units in a face-centered monoclinic unit cell (S.G. $C 2 / m) ; a=7.911(2) \AA, b=7.963(2) \AA, c=6.966(2) \AA, \beta=115.76(2)^{\circ}$. For 1082 intensities, collected on an automated single-crystal diffractometer, the final R value was 0.025 after absorption corrections. The structure consists of isolated $\mathrm{Os}_{2} \mathrm{O}_{10}$ clusters composed of two edge-shared OsO_{6} octahedra. These dimeric units are connected together by two types of La^{3+} ions in eightfold coordination. In view of the $\mathrm{Os}-\mathrm{Os}$ distance inside the pair ($2.462 \AA$) $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$ provides an example of metal-metal bonding involving a transition metal in a half-integral formal oxidation state of 5.5 .

Introduction

During an investigation of ternary oxides of the platinum metals, particular attention was paid to the combinations of these oxides with lanthanum oxide. In the case of rhenium, several authors report preparations of different oxides ($1-3$) and structural studies of two of them, $\mathrm{La}_{4} \mathrm{Re}_{6} \mathrm{O}_{19}(4,5)$ and $\mathrm{La}_{4} \mathrm{Re}_{2} \mathrm{O}_{10}$ (6); but for osmium only one compound, $\mathrm{La}_{4} \mathrm{Os}_{6} \mathrm{O}_{19}$ (7), has been identified and structurally investigated. The three-dimensional $\mathrm{Os}_{12} \mathrm{O}_{36}$ network is built up by corner-sharing $\mathrm{Os}_{2} \mathrm{O}_{10}$ clusters; the distance between Os atoms across an edgeshared octahedra ($2.50 \AA$) supports a direct metal-metal interaction.

It has been observed that $\mathrm{La}_{4} \mathrm{Os}_{6} \mathrm{O}_{19}$ is sometimes accompanied by a crystalline phase. In order to establish unambiguously its composition and to specify the oxidation state of osmium, a structure determination

[^0]has been performed on which we report in this paper.

Experimental

Rectangular-plate-shaped crystals were obtained, together with $\mathrm{La}_{4} \mathrm{Os}_{6} \mathrm{O}_{19}$, by heating at $900^{\circ} \mathrm{C}$ during several hours a mixture of composition $\mathrm{La}_{2} \mathrm{O}_{3}, 3 \mathrm{Os}$ with excess KClO_{3}, in a gold container inside a vacuumsealed silica tube. Several single crystals, suitable for X-ray structure analysis, were isolated but the quantity was not large enough for chemical analysis or even density determination.

The selected single crystal is $0.137 \times$ $0.086 \times 0.021 \mathrm{~mm}^{3}$. Oscillation and Weissenberg photographs display $2 / m$ symmetry. The systematic absences $h k l$ if $h+k=2 n+1$ are consistent with space group $C 2, C m$, or C2/m.

The monoclinic unit-cell dimensions are refined by means of 17 unambiguously
indexed reflections (Table I), using a Guinier camera and KCl as internal standard: $a=$ $7.911(2) \AA, b=7.963(2) \AA, c=6.966(2) \AA$, $\beta=115.76(2)^{\circ}$. Collection of intensity data is performed on a Philips PW 1100 automated diffractometer using Mo K_{c} radiation and a graphite monochromator. In order to achieve good absorption corrections and to minimize systematic errors, the totality of reciprocal space is explored to $\theta=40^{\circ}$. Reflections (4165) with $I>2 \sigma(I)$ are corrected for Lorentz and polarization effects. At this stage, because of the unknown structure of the phase, it is not possible to correct accurately for absorption effects. Atomic scattering factors for Os^{4+} and La^{3+} are taken from Cromer and Waber (8) and those for O^{2-} from Tokonami (9). Anomalous dispersion corrections are made according to the data of Cromer and Liberman (10).

Structure Determination and Refinement

The structure is solved by the heavy-atom method. Since only one major peak is observed on the section $0, y, 0$ of the threedimensional Patterson map for $y=\frac{1}{2}$, it is inferred that the most probable space group is $C 2 / m$. This choice is later confirmed by the success of the determination. The most prominent peak of the Patterson map occurs at $x \simeq 0.266, y=0, z \simeq 0.351$. It implies an interatomic distance of $\sim 2.4 \AA$, which was
already observed in $\mathrm{La}_{4} \mathrm{Os}_{6} \mathrm{O}_{19}$ (7) between osmium atoms across edge-shared octahedra. Os is accordingly located at $4 i(x, 0, z)$ positions with $x=0.133$ and $z=0.180$. The remaining major peaks of the Patterson map are then assigned to metallic atoms located at special positions: $4 h(0, y, 0)$ with $y \simeq 0.242$ and $2 b\left(0, \frac{1}{2}, 0\right)$.

From the nominal composition of the starting mixture of oxides, it is assumed that the formula of the compound is close to $\mathrm{La}_{4} \mathrm{Os}_{6} \mathrm{O}_{19}$. Absorption corrections, using the method of De Meulenaer and Tompa (11), are computed. Refining the atomic parameters and isotropic temperature factors with a full-matrix least-squares program yields a conventional R value of 0.105 , but the B coefficient of the $2 b$ Os atoms (Table II) is obviously too high for a sixfold coordination. The nature of these atoms is accordingly changed to La_{1}, which brings the final B values closer to those usually obtained, while R reduces to 0.089 . Absorption corrections are computed again, in accordance with the new formula $\mathrm{La}_{6} \mathrm{Os}_{4} \mathrm{O}_{x}(x \sim 17-21)$. Owing to the platelet form of the crystal, transmission factors range from 0.03 to $0.36 \quad(\mu \mathrm{Mo} K \alpha=$ $502 \mathrm{~cm}^{-1}$).

A Fourier map based on this model reveals 20 O atoms occupying one $8 j$ and three $4 i$ positions. Atomic parameters and isotropic temperature factors are then refined to $R=$

TABLE I
Powder Diagram of $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$

h	k	l	d_{obs}	$d_{\text {calc }}$	h	k	l	d_{obs}	$d_{\text {calc }}$
1	1	0	5.2974	5.3095	2	0	1	2.6427	2.6434
1	1	1	4.9089	4.9127	0	2	2	2.4639	2.4639
0	2	0	3.9785	3.9813	1	3	1	2.4435	2.4426
2	0	1	3.9103	3.9129	1	1	2	2.3838	2.3835
2	0	0	3.5610	3.5623	$\overline{3}$	1	0	2.2774	2.2758
1	1	1	3.5256	3.5282	0	0	3	2.0913	2.0911
0	2	1	3.3621	3.3615	0	4	0	1.9908	1.9907
2	0	2	3.1205	3.1212	4	0	3	1.7947	1.7946
$\overline{2}$	2	1	2.7912	2.7907					

TABLE II
Results of the Isotropic Temperature factor Refinement of Metallic Atoms

	$\underset{\text { hypothesis }}{\mathrm{La}_{4} \mathrm{Os}_{6}}$	$\mathrm{La}_{6} \mathrm{Os}_{4}$ hypothesis	
R	0.105		0.089
Site 4h	La B=0.42	La	$B=0.54$
Site $4 i$	Os $B-0.14$	Os	$B=0.26$
Site $2 b$	Os $B=1.41$	La	$B=0.61$

0.04 . A new refinement cycle with anisotropic temperature coefficients for metallic atoms reduces R to a final value of 0.027 . Use of a weighting scheme ($w=1 / \sigma\left(F_{0}\right)^{2}$ with $\sigma\left(F_{0}\right)=\sigma(I) / 2 I^{1 / 2}$) gives no further modification ($R=0.025, R_{w}=0.044$). Final atomic coordinates and thermal parameters for 1082 reflections are given in Tables III and IV. Bond lengths and angles in osmium and lanthanum coordination polyhedra are listed in Tables V and VI. ${ }^{1}$

An ultimate three-dimensional Fourier difference synthesis is then computed. The height of the most prominent peak is only
${ }^{1}$ Supplementary material has been deposited as Document No. 03405 NAPS with the National Auxiliary Publications Service, c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. A copy may be secured by citing the document number and by remitting $\$ 5.00$ for photocopy or $\$ 3.00$ for microfiche. Outside the U.S. and Canada add postage of $\$ 3.00$ for photocopy and $\$ 1.00$ for microfiche. Advance payment is required. Make check or money order payable to Microfiche Publications.
one-sixth of the height of an oxygen peak in the preceding synthesis. In accordance with these results, the compound is formulated as $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$, with two formula units per unit cell.

The preparation of the pure phase by reaction of the appropriate amounts of lanthanum oxide and osmium, under oxidizing conditions, has not yet been achieved. Several attempts have been made, between 800 and $900^{\circ} \mathrm{C}$, in gold, platinum, or silica tubes, with KClO_{3} or NaClO_{3} in stoichiometric quantity or in excess. Unknown phases, poorer in Os than $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$, are always found, while osmium tetroxide is present in the tube. Other experiments, using mixtures containing more osmium, lead to the formation of $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$ together with $\mathrm{La}_{4} \mathrm{Os}_{6} \mathrm{O}_{19}$ or another unknown phase, depending on the composition of the starting mixture and on the rate of the cooling. Failures to achieve preparation of a pure compound are attributed to the stability of OsO_{4} in the temperature range of our experiments.

Description of the Structure

The structure of $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$ consists of slightly distorted OsO_{6} octahedra occurring in pairs. The common edge $\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$ (Fig. 1) and the mean plane of the dimeric unit $\mathrm{Os}_{2} \mathrm{O}_{10}$ lie in the mirror planes of the unit cell, and their centers are located at the 0,0 ,

TABLE III
Atomic Coordinates ($\times 10^{5}$) and (Equivalent) Isotropic Thermal PARAMETER ($\times 10^{2} \AA$)

Atom	Site	x	y	z	B or $\langle B\rangle$ eq
$\mathrm{La}(1)$	$2 b$	0	$\frac{1}{2}$	0	(61)
$\mathrm{La}(2)$	$4 h$	0	$24319(7)$	$\frac{1}{2}$	(54)
Os	$4 i$	$13397(5)$	0	$17838(5)$	(29)
$\mathrm{O}(1)$	$4 i$	$86059(105)$	0	$10590(108)$	$50(8)$
$\mathrm{O}(2)$	$8 j$	$13993(80)$	$23735(75)$	$21221(88)$	$81(7)$
$\mathrm{O}(3)$	$4 i$	$40242(97)$	0	$28138(105)$	$37(8)$
$\mathrm{O}(4)$	$4 i$	$17857(101)$	0	$47689(112)$	$53(8)$

TABLE IV
Anisotropic Temperature Coefficients for Metallic Atoms ($\times 10^{5}$);
the Thermal Parameter is
$\exp \mid-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)$

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{La}(1)$	$414(12)$	$193(9)$	$491(15)$	0	$190(7)$	0
$\mathrm{La}(2)$	$284(8)$	$150(6)$	$456(11)$	0	$334(11)$	0
Os	$115(5)$	$94(4)$	$255(7)$	0	$80(4)$	0

Fig. 1. The dimeric unit $\mathrm{Os}_{2} \mathrm{O}_{10}$.

0 and $\frac{1}{2}, \frac{1}{2}, 0$ positions; so, each unit can be deduced from another by means of the unit cell or base-centered translations.

The double octahedra are linked by two kinds of lanthanum atoms, namely, $\mathrm{La}(1)$ and $\mathrm{La}(2)$. The former connects four $\mathrm{Os}_{2} \mathrm{O}_{10}$ clusters, the centers of which are situated at the corners of a practically regular square in the $x 0 y$ plane: Thus, the structure is best described by means of sheets of composition $\mathrm{La}\left(\mathrm{Os}_{2} \mathrm{O}_{10}\right)$ (Fig. 2). These sheets are then linked by $\mathrm{La}(2)$ atoms (Fig. 3), which connect four clusters situated at the vertices of a distorted tetrahedron. So, from a structural point of view, the compound may be formulated as $\mathrm{La}_{2}\left|\mathrm{La}\left(\mathrm{Os}_{2} \mathrm{O}_{10}\right)\right|$.

TABLE V
Bond Lengths (\AA) and Angles (${ }^{\circ}$) with Standard Deviations in Os Coordination Polyhedron (see Fig. 1)

$\mathrm{Os}-\mathrm{Os}^{\prime}$	$2.468(1)$	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Os}-\mathrm{O}(3)$	$82.8(4)$
$\mathrm{Os}-\mathrm{O}\left(1^{\prime}\right)$	$1.996(8)$	$\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}\left(1^{\prime}\right)$	$103.7(10)$
$\mathrm{Os}-\mathrm{O}(1)$	$1.999(8)$	$\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}(4)$	$86.8(5)$
$\mathrm{Os}-\mathrm{O}(2)$	$1.903(6)$	$\mathrm{O}(3)-\mathrm{Os}-\mathrm{O}(5)$	$86.8(6)$
$\mathrm{Os}-\mathrm{O}(3)$	$1.924(7)$	$\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}(2)$	$96.5(5)$
$\mathrm{Os}-\mathrm{O}(4)$	$1.952(8)$	$\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}\left(2^{\prime}\right)$	$89.9(5)$
$\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$	$3.142(19)$	$\mathrm{O}(3)-\mathrm{Os}-\mathrm{O}(2)$	$89.4(4)$
$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$	$2.754(8)$	$\mathrm{O}(2)-\mathrm{Os}-\mathrm{O}(4)$	$83.4(4)$
$\mathrm{O}(1)-\mathrm{O}(2)$	$2.911(9)$	$\mathrm{O}(2)-\mathrm{Os}-\mathrm{O}(2)$	$166.8(22)$
$\mathrm{O}(1)-\mathrm{O}(3)$	$2.594(8)$		
$\mathrm{O}(1)-\mathrm{O}(4)$	$2.712(8)$		
$\mathrm{O}(2)-\mathrm{O}(3)$	$2.692(8)$		
$\mathrm{O}(2)-\mathrm{O}(4)$	$2.564(8)$		
$\mathrm{O}(3)-\mathrm{O}(4)$	$2.662(13)$		
$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$	$2.820(10)$		

TABLE VI
Bond Lengths (\AA) and Angles (${ }^{\circ}$) with Standard Deviations in La Coordination Polyhedra

$\mathrm{La}(1)$ coordination polyhedron (Fig. 4)			
$\mathrm{La}(1)-\mathrm{O}(1)$ (2 x)	2.618(8)	$\mathrm{O}(1)-\mathrm{La}(1)-\mathrm{O}(3)$	62.1(3)
$\mathrm{La}(1)-\mathrm{O}(3)(4 \mathrm{x})$	2.522(6)	$\mathrm{O}(1)-\mathrm{La}(1)-\mathrm{O}\left(2^{\prime}\right)$	71.8(3)
$\mathrm{La}(1)-\mathrm{O}(3)(2 \mathrm{x})$	2.399(9)	$\mathrm{O}(1)-\mathrm{La}(1)-\mathrm{O}(2)$	108.2(4)
$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$	2.820(10)	$\mathrm{O}(3)-\mathrm{La}(1)-\mathrm{O}\left(2^{\prime}\right)$	105.3(5)
$\left.\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(2)\right\}$	$3.016(10)$	$\mathrm{O}(3)-\mathrm{La}(1)-\mathrm{O}(2)$	74.7(3)
$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$ \}	3.016 (10)	$\mathrm{O}(2)-\mathrm{La}(1)-\mathrm{O}\left(2^{\prime}\right)$	68.0(3)
$\mathrm{O}(1)-\mathrm{O}(3)$	$2.594(8)$	$\mathrm{O}(1)-\mathrm{La}(1)-\mathrm{O}\left(3^{\prime}\right)$	117.9(7)
$\mathrm{O}(2)-\mathrm{O}(3)$)	2.987(9)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{La}(1)-\mathrm{O}\left(2^{\prime \prime}\right)$	112.0(3)
$\left.\mathrm{O}\left(2^{\prime \prime \prime}\right)-\mathrm{O}(3)\right\}$	2.987 (9)		
$\mathrm{La}(2)$ coordination polyhedron (Fig. 5)			
$\mathrm{La}(2)-\mathrm{O}(2)(2 \mathrm{x})$	2.679(7)	$\mathrm{O}(2)-\mathrm{La}(2)-\mathrm{O}\left(2^{\prime \prime}\right)$	89.4(4)
$\mathrm{La}(2)-\mathrm{O}\left(2^{\prime}\right)(2 \mathrm{x})$	2.682(5)	$\mathrm{O}(2)-\mathrm{La}(2)-\mathrm{O}(4)$	59.9(3)
$\mathrm{La}(2)-\mathrm{O}(3)$ (2x)	$2.465(4)$	$\mathrm{O}(2)-\mathrm{La}(2)-\mathrm{O}\left(4^{\prime}\right)$	118.3(6)
$\mathrm{La}(2)-\mathrm{O}(4)$ (2x)	$2.443(6)$	$\mathrm{O}(4)-\mathrm{La}(2)-\mathrm{O}\left(4^{\prime}\right)$	75.1(5)
$\mathrm{O}(2)-\mathrm{O}(3)$	2.987(9)	$\mathrm{O}(4)-\mathrm{La}(2)-\mathrm{O}\left(2^{\prime \prime}\right)$	68.2(2)
$\left.\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)\right\}$	2.987 (9)	$\mathrm{O}\left(4^{\prime \prime}\right)-\mathrm{La}(2)-\mathrm{O}\left(2^{\prime \prime}\right)$	117.0(5)
$O(2)-O(4)$)	2.564(8)	$\left.\mathrm{O}(2)-\mathrm{La}(2)-\mathrm{O}\left(3^{\prime}\right)\right\}$	70.9(3)
$\left.\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)\right\}$	$2.564(8)$	$\left.\mathrm{O}\left(2^{\prime}\right)-\mathrm{La}(2)-\bar{O}(3)\right\}$	70.9(3)
$\mathrm{O}(4)-\mathrm{O}\left(2^{\prime \prime}\right)$)	$2.902(7)$	$\left.\mathrm{O}\left(2^{\prime}\right)-\mathrm{La}(2)-\mathrm{O}\left(3^{\prime}\right)\right\}$	110.9(5)
$\left.\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}\left(2^{\prime \prime \prime}\right)\right\}$	$2.902(7)$	$\mathrm{O}(2)-\mathrm{La}(2)-\mathrm{O}(3)\}$	110.9(5)
$\left.\mathrm{O}(3)-\mathrm{O}\left(2^{\prime \prime}\right)\right\}$	2692(8)	$\mathrm{O}(3)-\mathrm{La}(2)-\mathrm{O}\left(3^{\prime}\right)$	62.9(2)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{O}\left(2^{\prime \prime \prime}\right)$)	$2.692(8)$	$\mathrm{O}(2)-\mathrm{La}(2)-\mathrm{O}\left(2^{\prime \prime \prime}\right)$	95.3(2)
$\mathrm{O}(3)-\mathrm{O}\left(3^{\prime}\right)$	2.752(13)	$\mathrm{O}\left(2^{\prime \prime}\right)-\mathrm{La}-\mathrm{O}(3)$	62.9(2)
$\mathrm{O}(4)-\mathrm{O}\left(4^{\prime}\right)$	2.979(18)		

Discussion

Since all osmium atoms are located in the same crystallographic positions, the formal oxidation state of the transition metal is 5.5 . The OsO_{6} octahedron is only slightly distorted: Os-O distances are close to their mean value $(1.946 \AA)$. Taking $r\left(\mathrm{O}^{-}\right)=$ $1.38 \AA$, the ionic radius of osmium in $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$ is then $0.566 \AA$. The variation of $r(\mathrm{Os})$ in sixfold coordination versus oxidation degree using data collected by Shannon (12) or determined by the authors in $\mathrm{La}_{4} \mathrm{Os}_{6} \mathrm{O}_{19}(7)$ shows that the above value is indeed consistent with an oxidation state of 5.5.

The distance between osmium atoms in the double octahedra is only $2.46 \AA$ which is,
as outlined above, close to the corresponding distance observed in $\mathrm{La}_{4} \mathrm{Os}_{6} \mathrm{O}_{19}$. Furthermore, the value of α (1.16), which provides a better estimation of bond order (13), indicates the presence of an $\mathrm{Os}-\mathrm{Os}$ bond across the common edge.
The coordination of the lanthanum atoms is eightfold: In each case, the polyhedron is a distorted cube. Around $\mathrm{La}(1)$ (Fig. 4) are found two sets of $O(1)$ and $O(3)$ atoms belonging to clusters situated at the same x level. A more distorted cube is found around La (2) (Fig. 5), four additional La-O bonds at $3.14[2 \times \mathrm{La}(2)-\mathrm{O}(1)]$ and $3.21 \AA[2 \times \mathrm{La}(2)-$ $\mathrm{O}(4)]$ being too large to be counted into the coordination sphere of La atoms; however, $\mathrm{La}(2)-\mathrm{O}$ mean distances $(2.57 \AA)$ are close to $\mathrm{La}(1)-\mathrm{O}(2.52 \AA)$. Both are in fair agreement

Fig. 2. The sheet $\mathrm{La}\left(\mathrm{Os}_{2} \mathrm{O}_{10}\right)$.

Fig. 3. Projection of the structure along $0 y$ showing the linkage between sheets by $\mathrm{La}(2)$ atoms. Solid-line clusters are situated at $y=0$ and broken-line clusters at $y=\frac{1}{2}$.

FIG. 4. La(1) polyhedron.
with the value of ionic radius of La^{3+} in eightfold coordination proposed by Shannon (12).

Owing to the distance between neighboring clusters, it is possible to describe $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$ as composed of isolated clusters: The four nearest neighbors are situated in the same sheet, at a distance of about $5.6 \AA$, and the next-nearest neighbors belong to adjacent sheets and are $\sim 7 \AA$ apart. Such a situation was found by Meunier, Frit, and Galy (14) in $\mathrm{Cr}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$; however, there is no evidence, in this latter compound, of a metal-metal interaction between chromium atoms of the dimeric units. From this point of view, $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$ is to be compared to other

FIG. 5. La(2) polyhedron.
rare earth-transition metal oxides like $\mathrm{La}_{4} \mathrm{Re}_{2} \mathrm{O}_{10}$ (6) and $\mathrm{Nd}_{4} \mathrm{Re}_{2} \mathrm{O}_{11}$ (15): Both compounds exhibit $\mathrm{Re}-\mathrm{Re}$ bonds inside isolated clusters $\left(\mathrm{Re}_{2} \mathrm{O}_{8}\right.$ units in the former and $\mathrm{Re}_{2} \mathrm{O}_{10}$ in the latter). However, $\mathrm{La}_{3} \mathrm{Os}_{2} \mathrm{O}_{10}$, with the recently published work on $\mathrm{La}_{8} \mathrm{Ru}_{4} \mathrm{O}_{21}$ (16), provide the first examples of ternary oxides containing discrete clusters with a transition metal in a noninteger oxidation state.

References

1. O. Muller, Ph.D. dissertation, Pennsylvania State University (1968).
2. G. BaUd and M. Capestan, Bull. Soc. Chim. Fr., 3999 (1968).
3. O. Muller and R. Roy, Mater. Res. Bull. 4, 349 (1969).
4. N. Morrow and L. Katz, Acta Crystallogr. Sect. B 24, 1466 (1968).
5. J. M. Longo and A. W. Sleight, Inorg. Chem. 7, 108 (1968).
6. K. Waltersson, Acta Crystallogr. Sect. B 32, 1485 (1976).
7. F. Abraham, J. Trehoux, and D. Thomas, Mater. Res. Bull. 12, 43 (1977).
8. D. T. Cromer and J. T. Waber, Acta Crystallogr. 18, 104 (1965).
9. M. Tokonami, Acta Crystallogr. 19, 486 (1965).
10. D. T. Cromer and P. Liberman, J. Chem. Phys. 53, 1891 (1970).
11. S. De Meulenaer and H. Tompa, Acta Crystallogr. 19, 1014 (1965).
12. R. D. Shannon, Acta Crystallogr. Sect A 32, 751 (1976).
13. D. B. Rogers, R. D. Shannon, A. W. Sleight, and J. L. Gillson, Inorg. Chem. 8, 841 (1969).
14. G. Meunier, B. Frit, and J. Galy, Acta Crystallogr. Sect. B 32, 175 (1976).
15. K. A. Wilhelmi, E. Lagervall, and O. Muller, Acta Chem. Scand. 24, 3406 (1970).
16. F. A. Cotton and C. E. Rice, J. Solid State Chem. 24, 359 (1978).

[^0]: * To whom correspondence should be addressed.

